Comparison of alternative Storage Methods Evaluation of emission for a 33,000 m³ storage tank with 44 meters in diameter, according to API method, chapter 19 Storage product: gasoline (RVP 600 mbar) / temperature: Ta = Ts = 10 °C; DTa = 8°C / wind speed: 3,0 m/s Quantity of Emission for 12 filling cycles per year Quantity of Emission for 0 filling cycles per year | | | T ! | | Sources of emissions: | | | | | \ _ | | |---------|---|---|---|--|---|------------|-----------|------------------------|----------------------|---------------------------| | | | Tank dia.
44 meters | | annual
emissions
[kg/y] | rim space | guide pole | roof legs | other
installations | tank wall
wetting | efficiency
of tank [%] | | case 1: | Fixed roof tank
without floating roof
P/V-valve only | | comparison
tank
(base case) | 294.583
26.917 | | | | | | 0,0 | | case 2: | Floating roof tank | | double seal,
guide pole
seal, roof leg
seals | 1.266
1.196 | 895 | 122 | 122 | 58 | 70
0 | 99,6
95,6 | | case 3: | Floating roof tank | | threefold
seal, guide
pole seal
+ Helicoat*,
roof leg seals | 435
365 | 169 | 17 | 122 | 58 | 70
0 | 99,9
98,6 | | case 4: | Floating roof tank with alu dome | | double seal,
guide pole
seal, without
roof leg seals | 388
318 | 116 | 17 | 150 | 35 | 70
0 | 99,9
98,8 | | case 5: | Fixed roof tank with steel floating roof free ventilated | | double seal,
guide pole
seal, roof legs
fix | 238
168 | 116 | 17 | 0 | 35 | 70
0 | 99,9
99,4 | | case 6: | Fixed roof tank with steel floating roof P/V-valve | | double seal,
guide pole
seal, roof legs
fix | ~ 238
~ 168 | ahove F => satety armature required. The ettect of | | | | | 99,9
99,4 | | case 7: | Fixed roof tank
+ vapour balancing
+ vapour treatment | | VRU | High investment and operating costs / high total emissions (CO2, NOx, methane) in consideration of direct emissions and emissions by use of electric power and other utilities. Risk of failure of vapour treatment plant. | | | | | | | | case 8: | Floating roof tank +
vapour suck off from
seal spaces + vapour
treatment | threefold seal, guide pole seal + Helicoat*, roof leg seals | | Small compact single-stage adsorption equipment sufficient. Low investment and low operating costs. | | | | | | | ^{*} Guide pole cover